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ABSTRACT
Objective: Eating disorders are severe
psychiatric disorders of unknown etiol-
ogy. Understanding how neuronal func-
tion affects food choices could help
personalize treatment based on brain
function. Here we wanted to determine
whether disordered eating behavior is
associated with alterations in the primary
taste cortex’s ability to classify taste stim-
uli, which could interfere with taste
reward processing.

Method: One-hundred and six women,
27 healthy comparison (age 26.1566.95
years), 21 with restricting-type anorexia
nervosa (AN; age 23.1066.14 years), 19
recovered from restricting-type AN (recov-
ered AN; age 26.9565.31 years), 20 with
bulimia nervosa (BN; age 25.1565.31
years), and 19 with obesity (age 28.166

8.13 years), received sucrose, control
solution or no taste stimulation during
functional magnetic resonance brain
imaging. Multivariate Bayesian pattern
analysis (decoding) and cross-validation
tested taste classification accuracy
(adjusted for comorbidity, medication
use, taste perception, interoception,
and brain activation volume).

Results: For sucrose versus control solu-
tion, classification accuracy differed
(F5 2.53, p< 0.041). Post hoc tests indi-
cated higher classification accuracy in
healthy comparison compared to women
with AN (p< 0.016) or obesity (p<
0.027), and in recovered AN as compared
to AN (p< 0.016) or obesity (p< 0.047)
groups. Taste stimulation resulted in
sparse insula voxel activation across all
groups.

Discussion: Reduced classification accu-
racy across stimuli in women with AN or
obesity could indicate low brain encoding
discrimination of stimulus quality, which
could contribute to altered reward activa-
tion and eating drive that is not adjusted
to nutritional needs. This deficit appears
to normalize with recovery from AN, but
adjusting food flavor intensity could aid
in the treatment of individuals with AN
or obesity. VC 2016 Wiley Periodicals, Inc.

Keywords: anorexia; bulimia; classi-
fication accuracy; obesity; taste;
insula; recovery; decoding

(Int J Eat Disord 2016; 00:000-000)

Introduction

Eating disorders (EDs) are severe psychiatric disor-
ders,1 with anorexia nervosa (AN) characterized by
fear of weight gain and underweight, and bulimia
nervosa (BN) by binge eating and purging but
normal weight.2 Usually associated with more food

intake than physiologically needed is obesity,
defined by a body mass index (BMI, kg/m2) �30.
EDs and obesity are associated with increased mor-
tality,3,4 their underlying causes are considered
multifactorial and treatment success is modest.4–8

Basic science and human in vivo brain imaging
research has suggested that food restriction and
overeating are associated with alterations in reward
circuit function.

Taste is an important driver of food intake9 and
invariably associated with distinct neuronal pat-
terns in the insula, the brain’s primary taste cor-
tex.10 The insula connects to ventral striatum,
orbitofrontal cortex, and amygdala, higher order
brain structures that control how much we eat.11,12

Thus the insula has a “gate-keeper” function for
taste information transmission and could have a
central role in the pathophysiology of disordered
eating.13 The insula is also important for interocep-
tive awareness [responding to body cues14], which
tends to be altered in EDs.13
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Insula size is altered in EDs,15,16 and functional
alterations in the insula have also been reported
repeatedly. For instance, in AN after recovery, insula,
anterior cingulate, and striatal activation was
reduced during repetitive sucrose application,17 but
insula and cingulate response was increased when
applied randomly.18 In BN, sucrose and milkshake
activated insula and frontal cortex was less than in
CW.19,20 Imaging research in obesity most com-
monly implicated the insula,21 with increased or
decreased activation depending on anticipation or
receipt of visual or actual food stimuli.22,23

Functional brain imaging typically studies
strength of activation (dependent variable) in
response to specific stimuli (independent variable)
and may inform on specific brain circuits.24,25 The
measured signal is the sum of many neurons
coming together, although some neurons may con-
tribute much and others little to the overall signal.
In contrast, so called multivariate (multi-voxel)
pattern analysis, or decoding, goes the opposite
direction and uses brain activation patterns as
the independent variable to classify task condi-
tions.26–28 Multivariate pattern analysis is used to
investigate how brain regions code stimuli-specific
information as distinct patterns of neural activity.
This then allows for differentiation of distinct per-
ceptual states by assessing the characteristic distri-
bution of voxel activation. Thus, decoding tries to
identify a neuronal “fingerprint” to predict a condi-
tion or psychological state.24,29 However, there may
be many equally likely solutions of voxel activation
patterns, and to overcome this problem, one can
use constraints or priors in a multivariate Bayesian
approach, by testing how voxel patterns are distrib-
uted within predefined models.26,27 Crossvalidation
then can test the brain’s “pattern classification
accuracy”, or how well a person’s distinct activation
pattern (associated with the stimulus or psycholog-
ical state) can be generalized to the full data set,
which can be compared across individuals and
groups.

Various studies have applied decoding strategies
to brain activation. For instance, decoding has
been used in the study of vision, finding that dis-
tinct activation patterns could predict discrete
objects.30 Decoding was also used to study atten-
tion states, memory generation, decision making
bias and lie detection,31,32 as well as interoception
of pain, which could be relevant for ED research.13

To the best of our knowledge decoding has not
been studied previously in EDs or obesity.

Here we tested the hypothesis that insula taste
classification accuracy is reduced in individuals with

disordered eating behavior. We sought to (1) deter-
mine the best model of pattern activation in this
region across participants and (2) compare taste clas-
sification pattern accuracy between groups, while
correcting for potential confounds such as comorbid-
ity, medication use, brain volume, but also interocep-
tive or taste perception differences, factors that may
fluctuate with anxiety and self-restraint.33,34 We
anticipated two possible scenarios. One, AN could be
associated with higher and obesity with lower pattern
classification accuracy with the idea that under- and
overweight are associated with higher and lower
response to food stimuli.23 Alternatively, having in
mind that AN and obesity may respond stronger or
weaker to any type of stimulus, both groups might
distinguish taste stimuli poorly as they may code
stimulus salience similarly high or low. We studied
two additional groups, individuals recovered from
AN to test whether such deficits would improve with
recovery, and individuals with BN to strengthen
the hypothesis that any alterations seen are more
dependent on weight or other biologic factors than
simply on ED cognitions.

Methods

Study Participants

We recruited 106 women, 27 healthy comparison

women (CW), 21 women with restricting-type AN, 19

women recovered from restricting-type AN, 20 women

with BN, and 19 women with obesity (Table 1). The Colo-

rado Multiple Institutional Review Board approved the

study; all participants gave written informed consent.

Participants received $160 for the brain imaging session

and completion of assessments.

AN35 was defined as underweight below 85% of weight

expected for age and height, severe fear of gaining

weight, body image distortion, lack of menstrual cycle,

but without binge eating/purging behavior. Individuals

with BN had binge eating/purging episodes at least twice

per week for at least three months and self-evaluation

was unduly influenced by shape and weight. Obesity was

defined by BMI �30.36 Individuals recovered from AN

had a history of restricting-type AN, normal weight, regu-

lar menses, and normal exercise patterns for �1 year.

Healthy CW had no history of psychiatric or major medi-

cal illness, were not taking medication, and were within

normal BMI range life long.

Individuals with AN or BN were within their first 1–2

weeks of inpatient or partial hospitalization treatment,

and had no electrolyte, blood count or other laboratory

abnormalities. A doctoral level interviewer assessed psy-

chiatric diagnostic status using the structured clinical

interview (SCID35) for DSM-IV diagnoses. CW, women
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recovered from AN, women with BN or obesity were

studied during the first ten days of the menstrual cycle to

keep hormonal variation low.37

Psychological Assessments

Study participants completed self-assessments for: (1)

drive for thinness, bulimia, body dissatisfaction and intero-

ceptive deficits (Eating Disorder Inventory-3)38; (2) harm

avoidance (Temperament and Character Inventory)39; (3)

state and trait anxiety (Spielberger State and Trait Anxiety

Inventory)40; (4) depression (Beck Depression Inventory)41;

and (5) reward and punishment sensitivity (Sensitivity to

Reward and Punishment Questionnaire, revised).42

Brain Imaging Procedures

Prior to breakfast, participants rated randomly pre-

sented, unmarked taste stimuli (distilled water; five

sucrose solution strengths, Mallinckrodt Chemicals, Phil-

lipsburg, NJ: 2%, 4%, 8%, 16%, 1M; and artificial saliva:

25 mM KCl, 2 mM NaHCO3)43 for sweetness, ‘absent’1 to

‘extreme’9, and pleasantness, ‘dislike extremely’1 to ‘like

extremely’9, on 9-point Likert scales. Between 7.00 and

8.00 AM, AN, and BN groups ate breakfast according to

their meal plan, comparison, obese, and women recov-

ered from AN had breakfast matched to the average ED

program meal plan breakfast. Blood oxygen level

dependent functional magnetic resonance brain imaging

(fMRI) was performed between 8.00 and 9.00 AM (GE

Signa 3T scanner, T2* weighted echo-planar imaging,

voxel size 3.4 3 3.4 3 2.6 mm, TR 2100 ms, TE 30 ms,

angle 708, 30 slices, interleaved acquisition, and 2.6 mm

slice thickness with 1.4 mm gap).

Taste Task

Individuals received three taste stimuli during fMRI

imaging43: 1 mol/L sucrose solution (100 trials), no solu-

tion (100 trials), and artificial saliva (80 trials). Individu-

als learned to associate each taste stimulus with a paired

conditioned visual stimulus (CS) that is probabilistically

associated with its unconditioned stimulus (US): the no-

solution (null) CS was followed in 20% of trials by sucrose

(unexpected sucrose receipt, positive-prediction error),

and the sucrose CS was followed in 20% of trials by no-

solution (unexpected Sucrose omission, negative-

prediction error). The first 10 trials were fixed CS shape

for sucrose followed by US sucrose delivery to establish

an initial stable association between the CS sucrose

shape and US sucrose taste.43 Trials began with the CS

(2 s), followed by US delivery, tongue swish and swallow

and awaiting the next trial (4 s). Each trial lasted 6 s.

Every 2.1 s a brain image was recorded. All other trials

were fully randomized. Taste stimuli were applied using

a customized programmable syringe pump (J-Kem Sci-

entific, St. Louis, MO) controlled by E-Prime Software

(Psychological Software Tools, Pittsburgh, PA) and trig-

gered by MRI-scanner radiofrequency pulse.19 Task dura-

tion was 28 min. We only included trials with matching

CS–US association in order to focus on taste classifica-

tion and reduce effects from the prediction error

response.

Brain Imaging Analysis

Brain-imaging data were preprocessed and analyzed

using Statistical Parametric Mapping software (http://

www.fil.ion.ucl.ac.uk/spm/software/spm5/). Images were

realigned to the first volume, normalized to the Montreal

Neurological Institute template, and smoothed with a

6 mm FWHM Gaussian kernel.44 Image sequences were

manually inspected and images with artifacts or move-

ment >1 voxel removed. Data were modeled with a hemo-

dynamic response convolved boxcar function, using the

general linear model, including temporal and dispersion

derivatives, autoregression, and 128 s high-pass filter.

We computed three first level contrasts for each sub-

ject: (1) sucrose versus no solution; (2) artificial saliva

versus no solution; (3) sucrose versus artificial saliva.

Analysis 1 (group by condition ANCOVA):

To test whether groups differed in insula activation

strength, we used a random effects, whole brain analysis

(p< 0.05 family-wise error corrected (FWE), cluster size

�5 voxels).23

Analysis 2 (Multivariate Bayes, MVB, Decoding

Analysis):

Step 1. In the MVB approach27 the first step is to iden-

tify the optimal model of activation distribution in the

relevant brain region. The prediction is that brain activa-

tion is distributed according to a sparse model solution.

The area of interest on the functional images and for the

contrasts of interest are identified (from the taste activa-

tion task). The next step is a “greedy search” procedure.

Here the algorithm’s goal is to detect the best model of

activation distribution in relation to the task condition.

The brain region of interest is partitioned into subsets of

increasing size and tested for type of activation distribu-

tion: In a sparse model few voxels have large variance

while most have small variance. In a smooth model,

there is a sparse representation of activation that is spa-

tially coherent over the brain anatomy. The support

model is a type of distributed model where each pattern

is an individual voxel and a large number of distributed

patterns are expressed. The sparse, support, and smooth

MVB models were tested for each of the three contrasts

of interest (1) expected sucrose contrasted against

expected no solution; (2) expected sucrose contrasted

against expected artificial saliva; (3) expected artificial

saliva contrasted against expected no solution) for each

participant. Expectation–maximization (EM) uses the

highest voxel weights for fitting the model. This method

FRANK ET AL.
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creates the log-evidence value. The solution with the

largest log-evidence indicates the optimal set of activa-

tion distribution. EM algorithms can be prone to over-

fitting with higher order polynomials. However, this

problem is reduced with increasing number of data

points and the fMRI study and each condition (sucrose,

artificial saliva, no-solution) had 80 trials with 228

images across those 80 trials should provide adequate

number of data points.45

Step 2. After delineation of the adequate distribution

model, the log evidence can then be used for cross-

validation to identify classification accuracy. Cross-

validation partitions data into subsets so that the analysis

is performed on one (training) subset, while the other

(test) data are retained to confirm and validate the initial

analysis. In k-fold cross validation, data is randomly par-

titioned into k partitions, training the classifier on all but

one and evaluates classification performance on that

partition. This procedure is repeated for all k partitions

(here k 5 8). Cross-validation prediction accounts prop-

erly for serial correlations and confounds by ensuring

that the cross-validation weights cannot be influenced

by test data and that the prediction is conditionally inde-

pendent of the training data. Classification accuracy was

then compared across groups.

While there are other classification algorithms such as

support vector machine or Gaussian models, we chose

MVB for various reasons. We were not interested whether

brain response can separate patients from CW, which is a

typical goal of classification algorithms. Rather MVB tests

different distribution models and compares the model

evidence for each participant. Other methods base their

analysis on the expectation that a sparse model is at

hand. In light of different volumetric measures of the

insula across eating disorders we wanted to make sure

that we test various models in the eating disorder groups

and use the most accurate data for cross-validation.

Statistical Analysis

Behavioral data (ANOVA) and classification accu-
racy (univariate general linear model including fac-
tors and covariates, ANCOVA) were analyzed with
SPSS-22 software (IBM-SPSS, Chicago, IL). Post hoc
group comparisons were assessed with Dunnett’s
T3, and estimated marginal means were computed
for classification accuracy and multiple-comparison
corrected using bootstrap. Several variables were
hypothesized a priori to be possible confounds and
included in the between-group model (5 group
ANCOVA, CW, AN, BN, recovered AN, obese individ-
uals): number of activated voxels (adjusting for vol-
ume differences), interoceptive deficits, sweetness

perception of control solution as well as sucrose
solution; in addition comorbid anxiety and depres-
sion diagnoses and medication use were included
as factors in the model. Pearson correlation analysis
tested brain-behavior correlations. Sweetness per-
ception across sucrose concentrations was tested
with repeated measures ANOVA.

Results

Demographic Variables (Table 1)

Age was similar between groups. BMI was higher
in obesity and lower in AN and recovered AN
groups as compared to CW. Interoceptive deficits,
harm avoidance and state and trait anxiety were
higher in AN and BN groups as compared to CW,
depression scores were elevated in AN, recovered
AN and BN. Drive for thinness and body dissatis-
faction were elevated in all groups as compared to
CW, bulimia scores were elevated in BN and obe-
sity. Sweetness and pleasantness perception were
similar between groups, as was slope for sweetness
perception across concentrations (F 5 0.819, p<
0.516). Some individuals with AN or BN had
comorbid psychiatric disorders or were on
medication.

Analysis 1 (group by condition ANCOVA):

The 5-group by 3-taste condition contrast
including covariates depression, anxiety, and medi-
cation use, with and without interoceptive deficits
or sweet taste perception did not result in signifi-
cantly different insula activation; however within
groups, all contrasts showed positive posterior and
mid insula activation.

Analysis 2 (Multivariate Bayes, MVB, Decoding
Analysis):

Classification accuracy (mean 6 SEM) for sucrose
versus no solution (CW:70.7 6 1.6; AN:70.5 6 1.3;
BN:68.9 6 1.4; obesity:68.8 6 1.4; Recovered
AN:69.7 6 1.5) was not significantly different
between groups (df 5 4, F 5 0.615, p< 0.7). Classifi-
cation accuracy for artificial saliva versus no solution
(CW: 70.2 6 1.4; AN:69.8 6 1.2; BN:70.3 6 1.3;
obesity:69.9 6 1.2; recovered AN:69.5 6 1.3) was also
not significantly different across groups (df 5 4,
F 5 0.109, p< 0.9).

Sucrose versus artificial saliva classification
accuracy differed significantly across groups (df 5

4, F 5 2.601, p< 0.041), with lower classification
accuracy (mean 6 SEM) in AN (56.6 6 0.8; p<
0.016) and obesity (58.1 6 0.9; p< 0.027) as com-
pared to CW (60.4 6 1.0), and lower values
(p< 0.047) for AN versus recovered AN (60.0 6 0.9;
p< 0.016) and obesity versus recovered AN. BN
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(58.20 6 0.89) did not differ significantly from any
group (Fig. 1). The voxel weights in each group
were significantly greater for sparse versus smooth
or support distribution (Fig. 2, Supporting Infor-
mation Fig. 1): CW sparse 79.2 6 45.4, smooth
13.1 6 17.4, support 8.2 6 14.4, F 5 49.5, p< 0.001;
AN sparse 75.0 6 50.6, smooth 17.9 6 28.3, support
12.0 6 24.1, F 5 19.4, p< 0.001; BN sparse 79.0 6

43.8, smooth 17.5 6 23.7, support 9.8 6 19.2, F 5

30.3, p< 0.001; obesity sparse 75.4 6 34.1, smooth
11.5 6 11.6, support 5.2 6 9.4, F 5 62.7, p< 0.001;
recovered AN sparse 74.2 6 37.1, smooth 15.0 6

20.2, support 7.8 6 20.7, F 5 34.2, p< 0.001.

Correlation Analyses (Table 2)

CW: Classification accuracy for sucrose versus
artificial saliva contrasts correlated positively with
number of activated voxels (261.9 6 28.7; r 5 0.688,
p< 0.001) and negatively with sucrose sweetness
perception (r 5 20.527, p< 0.005).

AN: Classification accuracy for sucrose versus
artificial saliva was positively correlated with num-
ber of activated voxels (257.6 6 48.9; r 5 0.712,
p< 0.001).

Recovered AN: Classification accuracy for
sucrose versus artificial saliva was positively corre-
lated with interoceptive deficits (r 5 0.550,
p< 0.015).

BN: Classification accuracy for sucrose versus
artificial saliva was positively correlated with num-
ber of activated voxels (274.5 6 70.1; r 5 0.679,
p< 0.001); classification accuracy for sucrose ver-
sus no solution correlated negatively with sucrose
sweetness (r 5 20.690, p< 0.001).

Obesity: Classification accuracy for sucrose ver-
sus artificial saliva correlated positively with num-
ber of activated voxels (247.6 6 48.9; r 5 0.853,
p< 0.001) with a tendency to positive correlation
with interoceptive deficits (r 5 0.425, p< 0.070).

Discussion

This study indicates that AN and obesity are associ-
ated with reduced taste classification accuracy in
the insula when contrasting caloric sucrose against
a control solution. Pattern classification accuracy

FIGURE 1 Distributed sparse coding pattern of insula activation rendered on template brain across exemplary participants from each study
group. (A) High classification accuracy; (B) Low classification accuracy. CA, classification accuracy. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIGURE 2 Classification accuracy across groups. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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in recovered AN and BN did not differ significantly
from the CW group and suggests that taste classifi-
cation accuracy alterations could be adaptations to
an abnormal eating and weight state.

The overall accuracy of insula pattern classifica-
tion between 50% and 70% may seem low but is
comparable with other studies that investigated
brain pattern classification.46,47 Larger regions of
interest are used for decoding and pattern classifi-
cation and typically result in higher classification
accuracy; we selected the bilateral insula as a larger
yet anatomically defined region. There was no
group difference in classification accuracy for
sucrose or control solution tested against no solu-
tion. This suggests that the perceptual state to
sucrose or control solution applied individually,
which includes taste perception but also general
sensory information, is encoded adequately in AN
and obesity. However, when directly contrasting
the two taste stimuli, to remove effects of texture
and other sensory stimulation in the mouth,
encoding differences more specific to taste quality
become apparent. Thus there may be deficits in
neuronal encoding of distinct taste qualities in AN

and obesity, but this may remit with recovery from
AN as in our recovered sample. Those results seem
to be in line with previous studies. Perception of
individual taste stimuli in EDs was not altered,48

but research indicated lower olfactory or gustatory
stimulus discrimination in EDs.49 Some studies in
obesity have also shown difficulties with taste dif-
ferentiation,50 and sweet taste sensitivity increases
with weight-reduction in obesity.51,52

What determines such alterations could occur
on a variety of levels. For instance, leptin and other
hormones are altered in EDs and obesity and affect
taste perception53–55; reduced insula pattern classi-
fication could be due to primary structural changes
within the insula,15 or alternatively could result
from altered taste signal processing in afferent
pathways to the insula.56

The insula has repeatedly been implicated in ED
and obesity pathophysiology.13,17–21,23,57,58 The bilat-
eral anterior and middle insula responds to taste
stimulation59 and transmits information to ventral
striatal and orbitofrontal reward pathways.11 The
anteroventral insula is connected to the amygdala12

and aids in generating internal emotional states.60

TABLE 2. Correlation results

Pearson
Significantly activated voxels

Population Correlation EDI3-ID P AS S AS P 1M SU S 1M SU SU-AS SU-NO AS-NO

Healthy CW SU-AS % accuracy r 0.028 0.254 20.135 0.25 20.527** 0.688***
p 0.89 0.202 0.502 0.208 0.005 <0.001

SU-NO % accuracy r 20.198 20.163 20.094 20.037
p 0.322 0.417 0.639 0.854

AS-NO % accuracy r 20.11 0.021 20.031 0.075
p 0.584 0.917 0.878 0.709

Women with AN SU-AS % accuracy r 20.143 20.071 0.178 20.22 20.186 0.712***
p 0.536 0.76 0.44 0.337 0.419 <0.001

SU-NO % accuracy r 0.318 20.209 0.135 20.401
p 0.16 0.363 0.56 0.072

AS-NO % accuracy r 0.246 20.208 20.01 0.797***
p 0.283 0.367 0.964 <0.001

Women with BN SU-AS % accuracy r 20.193 0.561* 1 0.126 0.093 0.679***
p 0.414 0.01 . 0.596 0.697 <0.001

SU-NO % accuracy r 20.212 20.04 20.187 0.32
p 0.37 0.868 0.431 0.17

AS-NO % accuracy r 20.403 0.134 1 0.396
p 0.078 0.572 . 0.084

Women with
obesity

SU-AS % accuracy r 0.425 20.168 0.143 0.16 0.259 0.853***
p 0.07 0.492 0.559 0.512 0.284 <0.001

SU-NO % accuracy r 0.17 20.04 20.238 0.071
p 0.487 0.871 0.326 0.771

AS-NO % accuracy r 0.013 0.125 0.175 20.153
p 0.958 0.611 0.474 0.531

Women recovered
from AN

SU-AS % accuracy r 0.550* 0.196 0.098 0.088 0.021 0.217
p 0.015 0.422 0.691 0.721 0.932 0.372

SU-NO % accuracy r 0.016 20.093 20.074 0.33
p 0.949 0.706 0.763 0.168

AS-NO % accuracy r 0.233 0.162 0.023 0.799***
p 0.338 0.506 0.926 <0.001

AN, anorexia nervosa; BN, bulimia nervosa; CW, comparison women; EDI3-ID, Eating Disorder Inventory 3 Interoceptive Deficits; PAS, Artificial saliva
pleasantness rating; SAS, Artificial saliva sweetness rating; P 1 M SU, 1 molar sucrose pleasantness rating; S 1M SU, 1 molar sucrose sweetness rating;
SU-AS, sucrose versus artificial saliva; SU-NO, sucrose versuss no solution; AS-NO, artificial saliva versus no solution.
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Especially the right anterior insula has been associ-
ated with self-recognition, “abstract representation
of oneself”61 and interoceptive awareness.62 Left
anteroventral insula activation is related to gastric
distention14 and self-reported fullness.63 Thus,
many intertwined functions are processed and alter-
ations on different levels within the insula could
contribute to our findings.

Altered insula function could have important
clinical implications. If normal taste discrimination
is disturbed, then it is possible that normal insula
inputs to basal ganglia and higher order taste proc-
essing are altered.64 Subsequently, other circuits
such as subcortical reward or prefrontal cognitive-
emotional circuits could have greater influence on
determining the drive to eat or not eat. AN and
obesity have been associated with altered dopa-
mine related reward function,23 elevated or
reduced cognitive control65,66 as well as high anxi-
ety,67 and disturbances in those circuits could
increasingly drive eating pathology the more affer-
ents from the insula are altered. In fact, such a
“multifaceted” concept for behavior modulation
has been suggested previously for the psychopa-
thology of obesity.68 Hypothetically, if individuals
with AN and obesity do not receive appropriate
insula signals in response to taste stimuli but basal
ganglia dopamine hyper-(AN) or hypo-(obesity)
activation respectively have a stronger impact on
food choices, then it could be possible that reduc-
ing flavor intensity during treatment of AN and
enhancing flavor for obesity could counteract those
subcortical mechanisms. Normal insula classifica-
tion accuracy in the recovered AN group provides
hope that classification accuracy alterations do
improve with recovery.

Limitations

We can only speculate at this point why AN as well
as obesity groups showed similarly reduced classi-
fication accuracy when contrasting sucrose versus
artificial saliva. Response to taste stimuli may be
similarly increased or decreased across stimuli in
AN or obesity18,23 and the result when contrasting
stimuli against each other may be for each case
reduced classification accuracy. This will require
further research. We included medication use and
comorbid conditions as covariates in the analysis
but cannot exclude entirely their possible
effects.69,70 Brain volumes were different in parts of
the insula in individuals with EDs or obesity in past
studies, which could have affected the findings;
however, we corrected for the number of activated

voxels to adjust for such effects. Interoception was
altered in EDs, which could have affected the per-
ception of taste but was included as a covariate to
adjust for such effects. We included the bilateral
insula in the analysis and sub-regions could have
shown different results, but we felt it would be
important to include the entire insula in the analy-
sis in order not to exclude important aspects of the
circuitry.59 The classification accuracy for taste
solution versus no stimulation was relatively high
with around 70% for all participants, but was lower
for sucrose versus control solution. This could be
due to contributions of general aspects of the taste
stimuli such as water based solution texture and
temperature, which were similar for the study stim-
uli. However, smaller sub-regions of the insula
could have provided more refined results, thus
future studies will need to investigate insula subdi-
visions. Classification accuracy in BN was normal;
however, a larger sample size may have shown that
also the BN group has lower values. Taste pleasant-
ness and disgust also have important influence
on internal response to stimuli and brain
response.71,72 In this study we aimed to avoid con-
ditioned emotional response and we chose a highly
sweet 1 molar sucrose solution and a neutral con-
trol solution as stimuli. What we did not specifi-
cally test was disgust experience. Disgust is a
complex emotion that can be related to taste stim-
uli, but even more so comes into play in everyday
situations that for instance involve social and
moral values. We could not identify commonly
used disgust measures in taste fMRI research but
the Disgust Scale73 is a widely used assessment
tool. Its dimensions Core Disgust, Animal
Reminder Disgust, and Contamination-Based Dis-
gust can not necessarily be related to taste experi-
ence in this paradigm, but measures form this
scale have been associated with for instance OCD
and it is possible that measures from this scale
could be predictive of eating disorder diagnosis
and this in turn could be related to brain function.
Disgust in fact has been associated with anterior
insula activation74 and therefore differing experi-
ence of disgust across groups could have had
impact on the brain response or classification
accuracy measure. This will need further investiga-
tion in the future.

In conclusion, pattern classification is relatively
new to fMRI brain imaging analysis, but provides
information that goes beyond strength of activa-
tion and toward understanding of neuronal pat-
terns, which could inform about innervation and
provide a more refined approach to brain function.
On basis of the study results, we propose that very
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basic coding mechanisms for taste quality are
altered in AN and obesity. ED cognitions should
therefore not be responsible for this alteration, but
under- and over-weight or food deprivation and
overstimulation might drive the results observed.
The functional significance of these results will
need further study, but normal values in individu-
als recovered from AN suggest that taste stimuli
coding may be state dependent and recover with
weight restoration.
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